
A quantum statistical model of a three-dimensional linear rigid rotator in a bath of oscillators:

III. DC field dielectric property dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 6347

(http://iopscience.iop.org/0305-4470/30/18/016)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 6347–6370. Printed in the UK PII: S0305-4470(97)78350-1

A quantum statistical model of a three-dimensional linear
rigid rotator in a bath of oscillators: III. DC field dielectric
property dynamics
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Abstract. With the aid of a recently derived master equation, which for commodity purposes
will be referred to as the Hounkonnou–Navez master equation, the dielectric properties of a
polar fluid in a constant electric field regime is analysed by studying the rotational motions of
the system of molecules of the dielectric medium which are assimilated to linear rigid rotators.
Master equations are given for well defined matrix elementsσl,l+1(t), ϕl,l (t) and ηl,l+2(t).
While the electrical susceptibility describes low-energy rotational transitions, the Kerr effect
involves both low- and higher-energy transitions. For the quantum electrical susceptibility,
the linear response limit is considered while the Kerr effect accounts for higher-order electric
field effects. The classical Brownian limit of the quantum equations recover most results
published to date. The convergence of the classical results (which are in the form of continued
fractions) are guaranteed for large friction and/or small inertia; and low frequencies. Quantum
expressions, valid for weak coupling (small friction and/or large inertia) are obtained via a
rigorous mathematical theorem on weak coupling. They are the Van Vleck–Weisskopf line forms
for the electrical susceptibility and the Kerr function. More importantly, explicit expressions are
given for the frequency shifts and line widths. We demonstrate the transition from quantum to
classical effects as the the friction/inertia parameter(ζ/I ) increases. A temperature-dependent
cross-over is found.

1. Introduction

To understand molecular spectra better, the investigation of molecular dynamics is
indispensable. Although much work has been done to give the theoretical description of the
spectra of fluids, few have successfully formulated an analytical description of absorption
spectra over a wide range of temperatures and frequencies. Most of the theories are based
on phenomenological models that yield parameter-dependent results.

Progress in the theory of dielectrics has been greatly motivated by the development
of two statistical mechanics methods: (i) the kinetic equation method [1] and (ii) the
autocorrelation function (ACF) method [2]. The former is based on developing and solving
kinetic equations for the one particle probability functionf (t; r,p) (or density operator
ρ̂(t; r̂, p̂)) of molecules in phase space (or in the Hilbert space of the molecular dynamical
variables), while the ACF method, for the electric susceptibility, is based on the Kubo linear
response theory [3]. A wide range of models [4–7] use the ACF method, each differing
from the other in the interpretation of the changes of the physical characteristics of motion
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6348 J T Titantah and M N Hounkonnou

(momentum, orientation and energy) of the molecules as a result of collision. For theJ
diffusion model [2, 8], for example, the molecular orientation is unaltered after impact, while
the magnitude and direction of the angular momentum are changed.

Recently [9], we presented the analysis of the Kerr effect relaxation of a system of polar
linear rigid rotators in interaction with a bath of harmonic oscillators. We did this by using
a master equation that we derived [10] for quantum systems. In the present work, we use
this equation to calculate the electrical susceptibility and Kerr function for the case where
a constant unidirectional electric field is suddenly applied to the system. This problem
was classically tackled by Morita and Watanabe [11], using the rotational Smoluchowski
equation. Kalmykov and Titov [2] presented a semiclassical method based on theJ diffusion
model. Their analysis was limited to the electrical susceptibility calculation. In the same
paper, they used the ACF method on the Van Vleck–Weisskopf model. This model supposes
that, after every collision, the molecule can be found in any possible state with the probability
proportional to the Boltzmann distribution corresponding to the instantaneous Hamiltonian
of the system. Their results could be recovered from the results we obtain in this work for
the weak coupling or the rotating wave approximation limit (RWA). The classical theories
enumerated above together with our recent works [12, 13] effectively describe the high-
density spectra of polar fluids.

This paper is organized as follows. In section 2, a brief description of the model is
given together with the Hounkonnou–Navez (HN) master equation governing the evolution
of the probability density operator of the rotator. In section 3, master equations are given
for some well defined matrix elements. In section 4, the electrical susceptibility and Kerr
function are calculated for the classical Brownian limit. In section 5, the RWA limit is
considered. In section 6, we finish the paper with discussions.

2. Description of the model

We consider a linear rigid rotator, fixed at its centre and free to rotate about the latter. It
interacts with a bath of harmonic oscillators. The rotator-bath system Hilbert spaceH is
the tensor product of the rotatorHS and bathHB Hilbert spaces, respectively:

H = HS ⊗HB. (1)

The Hamiltonian of the system subjected to an applied electric field is

ĤT (t) = Ĥ + ĤE(t) (2)

whereĤ is the Hamiltonian used in [9, 10] and

ĤE(t) =
 0 if t 6 0

−µE cosβ̂ − α‖ − α⊥
2

E2 cos2 β̂ − α⊥
2
E2Î if t > 0.

(3)

α‖ and α⊥ are, respectively, the rotator polarizability tensor components parallel and
perpendicular to the molecular principal axis. We assume that the electric field is applied
along thez-axis of the laboratory frame.β̂ is the polar angle or the angle between the
applied field and the principal axis of the rotator.

The evolution of the reduced probability density operatorρ̂S(t) is governed by the HN
master equation [9, 10]

∂ρ̂S(t)

∂t
+ i

h̄
[ĤS, ρ̂S(t)] + K̂ρ̂S(t) = − i

h̄
[ĤE, ρ̂S(t)] (4)
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with the collision term

K̂ρ̂(t) = ζ

I

∞∑
l=1

l{A∗l û · û−l ρ̂S(t)− Alû · ρ̂S(t)û+l + Blû · û+l ρ̂S(t)− B∗l û · ρ̂S(t)û−l
−A∗l û−l · ρ̂S(t)û+ Alρ̂S(t)û+l · û+ B∗l ρ̂S(t)û−l · û− Blû+l ρ̂S(t) · û} (5)

where

Al = ω2
D

ω2
D + ω2

l

[
1+N(ωl)+ i

(
κ(xl, xD)− ωl

2ωD

)]
(6)

Bl = ω2
D

ω2
D + ω2

l

[
N(ωl)+ i

(
κ(xl, xD)+ ωl

2ωD

)]
(7)

with

κ(xl, xD) = −
[

1

xD
+ 2

∞∑
n=1

x2
l − 2πxDn

(xl + xD)(x2
l + 4π2n2)

]
(8)

and

xD = βh̄ωD xl = βh̄ωl β = 1

kBT
n = 1, 2, 3, . . . (9)

where we used the spherical harmonic expansion of the unit vector operatorû as [9, 10]

û(t) =
∞∑
l=1

(û+l + û−l (t)). (10)

ωD is the characteristic Debye frequency,kB is the Boltzmann constant,T is the absolute
temperature andN(ωl) is the occupation number of the rotator quantum levell. A∗l and
B∗l are the complex conjugates ofAl and Bl , respectively. ζ is the friction coefficient
characterizing the effect of the bath oscillator concentration on the rotator dynamics. This
equation is the same as those of [9, 10] but for the fact that there is an explicit presence of
the electric field. This is because we are interested in the investigation of how a thermally
equilibrated system in the the absence of any stress will relax to the new equilibrium in the
presence of a stress. In other words, is the relaxation following the sudden application of a
DC field explained by the same mechanism as the relaxation following its sudden removal?

An appropriate initial condition for the above master equation is the canonical probability
density operator in the absence of the electric field.

If Q(t) is the heat gained by the rotator from the bath and as a result of the work done
by the electric field on the dipole through the interaction with the dipole momentµ, we
write the energy balance equation

d

dt
Q(t) = d

dt
U(t)+ d

dt
W(t) (11)

whereU(t), the internal energy of the rotator, andW(t), the work done by the field, are
defined as:

U(t) = 〈ĤSρ̂S(t)〉 and W(t) = 〈ĤEρ̂S(t)〉 (12)

with the angle brackets〈. . .〉 denoting ensemble averaging. By using the HN master
equation (4), we obtain, for a constant field,

d

dt
Q(t) = 2B(KBT − U(t))+ 4µEc

3

∞∑
l=0

h̄

I
(l + 1)2

eβEl

Z
Im σl,l+1(t) (13)
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to second order in electric field strength. Im denotes the imaginary part,B = (ζ/I ) is
the rotator-bath characteristic frequency. To obtain this equation, we used the change of
function,

l∑
m=−l

C(l + 1, m)ρml,l+1(t) =
l∑

m=−l
C(l + 1, m)2σl,l+1(t)

e−βEl

Z
(14)

whereZ is the free rotator partition function;El = (h̄2/2I )l(l + 1) is the rotator rotational

kinetic energy andC(l,m) =
√

(l−m)(l+m)
(2l−1)(2l+1) .

σl,l+1(t) is independent ofm. The matrix elementsρml,l′(t) are defined as

ρml,l′(t) = 〈l, m|ρ̂S(t)|l′, m〉. (15)

Remark that in the absence of the fieldQ = U and the internal energy of the rotator tends
asymptotically to that of the thermal bath. The energy balance equation is very important
as it describes well the process of energy transfer from the bath to the rotator or vice versa.
The matrix elementsσl,l+1(t) determine explicitly the electric susceptibility; the latter, thus,
plays a vital role in the energy transfer processes.

3. Master equations for matrix elements

We want to calculate the electric polarizationP(t) defined as the ensemble average of the
component of the rotator dipole moment parallel to the applied electric field which we
assume directed along thez-axis of the laboratory frame [1, 12–14]

P(t) =
∞∑
l=0

l∑
m=−l
〈l, m|µ̂zρ̂S(t)|l, m〉 (16)

where µ̂z = µûz, with ûz being thez component of the rotator orientation operator. By
using the spherical harmonic representation ofûz, we obtain

P(t) = 2µ

3

∞∑
l=0

(l + 1)
e−βEl

Z
Reσl,l+1(t) (17)

whereZ is the one-particle free rotator canonical partition function and Re denotes the real
part.

The Kerr function is the ensemble average of the second-order Legendre polynomial
P2(cosβ) [1, 12–14]

8(t) = 1

2

∞∑
l=0

l∑
m=−l
〈l, m|(3û2

z − 1)ρ̂S(t)|l, m〉. (18)

On defining matrix elementsϕl,l andηl,l+2 through

l∑
m=−l

l(l + 1)− 3m2

(2l − 1)(2l + 3)
〈l, m|ρ̂S(t)|l, m〉 = 2

15

e−βEl

Z

l(l + 1)(2l + 1)

(2l − 1)(2l + 3)
ϕl,l(t) (19)

and
l∑

m=−l

√
((l + 1)2−m2)((l + 2)2−m2)

(2l + 1)(2l + 3)2(2l + 5)
〈l, m|ρ̂S(t)|l + 2, m〉

=
l∑

m=−l

((l + 1)2−m2)((l + 2)2−m2)

(2l + 1)(2l + 3)2(2l + 5)

e−βEl

Z
ηl,l+2(t) (20)
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we obtain,

8(t) = 2

15

∞∑
l=0

e−βEl

Z

(l + 1)

(2l + 3)

{
l(2l + 1)

(2l − 1)
ϕl,l(t)+ 3(l + 2)Reηl,l+2(t)

}
. (21)

We now give the master equations verified by the different matrix elementsσl,l+1, ϕl,l(t)

andηl,l+2(t).
To obtain the equation verified byσl,l+1, we multiply through the HN master equation

(4) from the left by
∑l

m=−l C(l + 1, m)|l + 1, m〉〈l, m| and take trace. This leads to

l∑
m=−l

1

Z

[
C(l + 1, m)2e−βEl

(
∂

∂t
− ih̄

I
(l + 1)

)
σl,l+1(t)

+B
{
C(l + 1, m)2e−βEl

[
(A∗l l

2+ Bl+1(l + 1)2)
1

2l + 1
+ (Al+1(l + 1)2

+B∗l+2(l + 2)2)
1

2l + 3

]
σl,l+1(t)

−C(l,m)2e−βEl−1
l + 1

2l + 1
[(Bll + (l + 1)B∗l+1]σl−1,l(t)(1− δlo)

−C(l + 2, m)2e−βEl+1
l + 1

2l + 3
[A∗l+1(l + 1)+ Al+2(l + 2)]σl+1,l+2(t)

−C(l + 1, m)2
l + 1

(2l + 1)(2l + 3)
[A∗l+1(l + 1)+ B∗l+1(l + 1)]σ ∗l,l+1(t)

}]
= i

l∑
m=−l

[
µE(t)

h̄

{
C(l + 1, m)2(ρml+1,l+1− ρml,l)

+C(l,m)2C(l + 1, m)2
e−βEl−1

Z
ηl−1,l+1(t)(1− δl,0)

−C(l + 1, m)2C(l + 2, m)2
e−βEl

Z
ηl,l+2(t)

}
+1αE(t)

2

2h̄

{
[C(l,m)2− C(l + 2, m)2]C(l + 1, m)2

e−βEl

Z
σl,l+1(t)

−C(l,m)2C(l + 1, m)2
e−βEl−1

Z
σl−1,l(t)(1− δl,0)

+C(l − 1, m)2C(l,m)2C(l + 1, m)2
e−βEl−2

Z
λl−2,l+1(t)(1− δl,0)(1− δl,1)

−C(l + 1, m)2C(l + 2, m)2C(l + 3, m)2
e−βEl

Z
λl,l+3(t)

+C(l + 1, m)2C(l + 2, m)2
e−βEl+1

Z
σl+1,l+2(t)

}]
. (22)

The equation forϕl,l is obtained by multiplying through the master equation by
{(l(l + 1)− 3m2)/(2l − 1)(2l + 3)}|l, m〉〈l, m| and taking trace to obtain

l∑
m=−l

[
∂

∂t

l(l + 1)− 3m2

(2l − 1)(2l + 3)
ρml,l(t)+ 2B Re

{
[All2+ Bl+1(l + 1)2]

2l + 1

l(l + 1)− 3m2

(2l − 1)(2l + 3)
ρml,l(t)

−Al+1l
(l + 1)(l + 2)− 3m2

(2l + 1)(2l + 3)2
ρml+1,l+1(t)
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−Bll l(l − 1)− 3m2

(2l − 1)2(2l + 3)
ρml−1,l−1(t)(1− δl0)

−3
[Bll + Al+1(l + 1)]

(2l + 1)(2l + 3)
C(l,m)2C(l + 1, m)2

e−βEl−1

Z
ηl−1,l+1(t)(1− δl0)

}]
= 2

Z

l∑
m=−l

l(l + 1)− 3m2

(2l − 1)(2l + 3)

{
µE(t)

h̄

[
C(l + 1, m)2e−βEl Im σl,l+1(t)− C(l,m)2

×e−βEl−1

Z
Im σl−1,l(t)(1− δl,0)

]
+1αE(t)

2

2h̄
[C(l + 1, m)2C(l + 1, m)2e−βEl Im ηl,l+2(t)

−C(l − 1, m)2C(l,m)2e−βEl−2 Im ηl−2,l(t)(1− δl,0)(1− δl,1)]
}

(23)

where Im denotes the imaginary part.
Finally, the equation forηl,l+2 is obtained by multiplying through the master equation (4)

from the left by
∑l

m=−l C(l + 1, m)C(l + 2, m)|l + 2, m〉〈l, m| and taking trace:

l∑
m=−l

[
C(l + 1, m)2C(l + 2, m)2

e−βEl

Z

[
∂

∂t
− ih̄

I
(2l + 3)

]
ηl,l+2(t)

+B
{
C(l + 1, m)2C(l + 2, m)2

e−βEl

Z

{
[A∗l l

2+ Bl+1(l + 1)2]
1

2l + 1

+[Al+2(l + 2)2+ B∗l+3(l + 3)2]
1

2l + 5

}
ηl,l+2(t)

− l + 2

2l + 3
C(l,m)2C(l + 1, m)2

e−βEl−1

Z
[Bll + Bl+2(l + 2)]ηl−1,l+1(t)(1− δlo)

−C(l + 2, m)2C(l + 3, m)2
e−βEl+1

Z

l + 1

2l + 3
×[A∗l+1(l + 1)+ Al+3(l + 3)]ηl+1,l+3(t)

−2
[A∗l+1(l + 1)+ Bl+2(l + 2)]

(2l + 3)2
(l + 1)(l + 2)− 3m2

(2l + 1)(2l + 5)
ϕl+1,l+1(t)

}]
= i

l∑
m=−l

[
µE(t)

h̄

{
C(l + 1, m)2C(l + 2, m)2

e−βEl+1

Z
σl+1,l+2(t)

−C(l + 1, m)2C(l + 2, m)2
e−βEl

Z
σl,l+1(t)

+C(l,m)2C(l + 1, m)2C(l + 2, m)2
e−βEl−1

Z
λl−1,l+2(t)(1− δl,0)

−C(l + 1, m)2C(l + 2, m)2(l + 3, m)2
e−βEl

Z
λl,l+3(t)

}
−1αE(t)

2

2h̄

{
C(l + 1, m)2C(l + 2, m)2(ρml,l(t)− ρml+1,l+1(t))

−[C(l,m)2+ C(l + 1, m)2− C(l + 2, m)2C(l + 3, m)2]

×C(l + 1, m)2C(l + 2, m)2
e−βEl

Z
ηl,l+2(t)− C(l + 1, m)2C(l + 2, m)2
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×
(
C(l − 1, m)2C(l,m)2

e−βEl−2

Z
ζl−2,l+2(t)(1− δl,0)(1− δl,1)

−C(l + 3, m)2C(l + 4, m)2
e−βEl

Z
ζl,l+4(t)

)}]
. (24)

The new matrix elementsλl,l+3(t) andζl,l+4(t) are defined through

C(l + 1, m)C(l + 2, m)C(l + 3, m)〈l, m|ρ̂S(t)|l + 3, m〉
= (C(l + 1, m)C(l + 2, m)C(l + 3, m))2λl,l+3(t)C(l + 1, m)C(l + 2, m)

×C(l + 3, m)C(l + 4, m)〈l, m|ρ̂S(t)|l + 4, m〉
= (C(l + 1, m)C(l + 2, m)C(l + 3, m)C(l + 4, m))2ζl,l+4(t). (25)

The initial conditions onσl,l+1(t), ϕl,l(t) andηl,l+2(t) are

σl,l+1(t = 0) = ϕl,l(t = 0) = ηl,l+2(t = 0) = 0. (26)

For commodity, equations (22)–(24) shall henceforth be referred to as Hounkonnou–
Titantah (HT) equations for the electrical susceptibility and the Kerr effect, as they will
frequently be used in subsequent works. Equation (22) will be referred as HT1, (23) as
HT2 and (24) as HT3.

Remark that any matrix elementKl,l+n (with n 6= 0) is at least ann-order electric
field term. In particular,ϕl,l(t) is a second-order term. This follows from HT1 that the
polarization is an odd function of electric field strengthE(t). Thus, the polarization reverses
as the field reverses. In contrast, the electrical birefringence is an even function ofE(t). The
modification in the refractive index tensor is thus, independent of the field orientation. In
the analysis of the electrical susceptibility, we limit ourselves to the linear response regime
while the Kerr effect will be given to second order in the electric field strength. In the
σl,l+1(t) equation (HT1), we, therefore, ignore third-order terms such asE(t)ηl,l+2(t) and
E(t)2σl,l+1(t); and fifth-order terms such asE(t)2λl,l+3(t) while retaining first-order terms
such asE(t)ρml,l(t) in which case we consider the canonical thermal equilibrium density
matrix element in zero field(ρml,l(t) = (ρml,l)

eq = e−βEl /Z). In the ηl,l+2(t) (HT3) and
ϕl,l(t) (HT2) equations, fourth-order field terms such asE(t)2ηl,l+2(t), E(t)λl,l+3(t) and
sixth-order terms such asE(t)2ζl,l+4(t) are ignored. The appropriate reduced HT equations
are, thus:

(i) the reduced HT1:(
∂

∂t
− ih̄

I
(l + 1)

)
σl,l+1(t)+ B

[{
(A∗l l

2+ Bl+1(l + 1)2)
1

2l + 1
+ (Al+1(l + 1)2

+B∗l+2(l + 2)2)
1

2l + 3

}
σl,l+1(t)

−eβ(El−El−1)
l

2l + 1
[Bll + (l + 1)B∗l+1]σl−1,l(t)(1− δl0)

−e−β(El+1−El) l + 2

2l + 3
[A∗l+1(l + 1)+ Al+2(l + 2)]σl+1,l+2(t)

− l + 1

(2l + 1)(2l + 3)
[A∗l+1(l + 1)+ B∗l+1(l + 1)]σ ∗l,l+1(t)

]
= − i

µE(t)

h̄
(1− e−β(El+1−El)) (27)
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(ii) the reduced HT2:

∂

∂t
ϕl,l(t)+ 2B Re

{
(All

2+ Bl+1(l + 1)2)

2l + 1
ϕl,l(t)

−Al+1(l + 1)
(l + 2)(2l − 1)

(2l + 1)2
e−β(El+1−El)ϕl+1,l+1(t)

−Bll (l − 1)(2l + 3)

(2l + 1)2
eβ(El−El−1)ϕl−1,l−1(t)(1− δl0)

−3
(Bll + Al+1(l + 1))

(2l + 1)2
eβ(El−El−1)ηl−1,l+1(t)(1− δl0)

}
= µE(t)

h̄

(
2l − 1

2l + 1
Im σl,l+1(t)− eβ(El−El−1)

2l + 3

2l + 1
Im σl−1,l(t)(1− δl,0)

)
(28)

and
(iii) the reduced HT3:[

∂

∂t
− ih̄

I
(2l + 3)

]
ηl,l+2(t)+ B

[{
[A∗l l

2+ Bl+1(l + 1)2]
1

2l + 1

+[Al+2(l + 2)2+ B∗l+3(l + 3)2]
1

2l + 5

}
ηl,l+2(t)

− l

2l + 1
eβ(El−El−1)[B∗l l + Bl+2(l + 2)]ηl−1,l+1(t)(1− δl0)

−e−β(El+1−El) l + 3

2l + 5
[A∗l+1(l + 1)+ Al+3(l + 3)]ηl+1,l+3(t)

− 2

(2l + 1)(2l + 5)
[A∗l+1(l + 1)+ Bl+2(l + 2)]ϕl+1,l+1(t)

]
= i

µE(t)

h̄
(e−β(El+1−El)σl+1,l+2(t)− σl,l+1(t))− i

1αE(t)2

2h̄
(1− e−β(El+2−El))

(29)

where1α = (α‖−α⊥). If the reduced HT1, HT2 and HT3 equations are solved exactly, for
all l and all model parameters such as temperatureT , inertial effectsB = ζ/I and moderate
fields, then the exact analysis of the dielectric properties of polar or polarizable fluids is
accessible for a wide range of temperatures and frequencies. In the paragraph that follows,
we present a low-frequency analysis of this problem. This is the classical Brownian limit
which is a highly explored aspect of the problem [1, 12–14].

4. The classical Brownian limit in constant field

In the classical Brownian limit [13, 15] the bath is much faster than the rotator, in other
words, the rotator frequenciesωl = h̄l/I are much smaller than its mean thermal agitation
frequencyωmean = (kBT /I)

0.5 which in turn is much smaller than the typical oscillator
frequencyωD. The spectrum ofĤS is assumed to be continuous. These hypotheses justify
the following limit:

a = (h̄/I )2

(kBT /I)
→ 0 and

kBT

Iω2
D

→ 0 (30)

and continuum approximation
a

2
l(l + 1)→ x. (31)
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Transformation (31) is similar to the one used in [12, 13] on the Fokker–Planck–Kramers
equation where they letx = I�2

2kBT
, where� is the angular velocity of the rotator.

On letting

σl,l+1(t) = σ1l(t)+ i(l + 1)σ2l(t) (32)

ηl,l+2(t) = η1l(t)+ i(2l + 3)η2l(t) (33)

while takingϕ(x, t), σ1(x, t), σ2(x, t), η1(x, t) andη2(x, t) to be the continuum analogues
of ϕl,l(t), σ1l , σ2l , η1l(t) andη2l(t), respectively, we obtain the system of coupled partial
second-order differential equations:[
∂

∂τ
− 2

(
x
∂2

∂x2
+ (1− x) ∂

∂x

)]
σ1(x, τ )+ 2b2xσ2(x, τ ) = 0 (34)[

∂

∂τ
− 2

(
x
∂2

∂x2
+ (2− x) ∂

∂x
− 1

2

)]
σ2(x, τ )− b1σ1(x, τ ) = −b1

µE(τ)

kBT
(35)[

∂

∂τ
− 2

(
x
∂2

∂x2
+ (1− x) ∂

∂x

)]
ϕ(x, τ )+ 3

2x
(ϕ(x, τ )− η1(x, τ ))

= 2b2
µE(τ)

kBT

(
∂

∂x
− x + 1

)
σ2(x, τ )− 3b2

µE(τ)

kBT
σ2(x, τ ) (36)[

∂

∂τ
− 2

(
x
∂2

∂x2
+ (1− x) ∂

∂x

)]
η1(x, τ )+ 8b2xη2(x, τ )− 1

2x
(ϕ(x, τ )− η1(x, τ ))

= − 2b2
µE(τ)

kBT

[
∂

∂x
− x + 1

]
σ2(x, τ )− 2b2

µE(τ)

kBT
σ2(x, τ ) (37)[

∂

∂τ
− 2

(
x
∂2

∂x2
+ (2− x) ∂

∂x
− 1

2

)]
η2(x, τ )− b1η1(x, τ )

= b1

2

µE(τ)

kBT

[
∂

∂x
− 1

]
σ1(x, τ )− b1

1αE(τ)2

2kBT
(38)

whereb1 = h̄/(IB), b2 = h̄/(aIB) andτ = Bt is a dimensionless time.

4.1. The constant field susceptibility

By using the continuum approximation in equation (17) we obtain

P(τ) = µ

3

∫ ∞
0

dx e−xσ1(x, τ ). (39)

Remark that the spatial parts of the differential operators defining the various functions are
related to those of the generalized Laguerre polynomialsLmj (x) for x ∈ [0,∞). We look
for solutions to the system (34), (35) in the form:(

σ1(x, τ )

σ2(x, τ )

)
=
∞∑
j=0

(
S0
j (τ )Lj (x)

S1
j (τ )L

1
j (x)

)
. (40)

Using this together with the orthogonality property of the Laguerres in equation (39), we
obtain

P(τ) = µ

3
S0

0(τ ). (41)
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The properties ofLmj (x) applied to equations (34) and (35) give the differential difference
equations for the coefficientsS0

j (τ ) andS1
j (τ ) as:(

d

dτ
+ 2j

)
S0
j (τ )+ 2b2[(j + 1)S1

j (τ )− jS1
j−1(τ )] = 0 (42)

and (
d

dτ
+ 2j + 1

)
S1
j (τ )− b1[S0

j (τ )− S0
j+1(τ )] = −b1

µE(τ)

kBT
δj,0 (43)

with S0
j (0) = S1

j (0) = 0. For commodity reasons, equations (41)–(43) will be referred to,
in subsequent works, as the classical HT equations for the electrical polarization.

On taking the Laplace transforms of equations (41)–(43), forE(t) = Ec, while searching
for S0

0(s
′ = s/B) as a continued fraction, we obtain the spectral function or the reduced

susceptibility

χ?r (ω
′) = iω′P̃ (iω′)/P (0)

= 2γ

2γ + iω′(iω′ + 1)+ 2γ iω′

iω′ + 2+ 4γ

iω′ + 3+ 4γ

s ′ + 4+ 6γ

iω′ + 5+ · · ·

(44)

where γ = IkBT /ζ
2. The convergence of this fraction is governed by the parameter

γ = (IkBT /ζ
2). For low frequencies(ω′ = ω/B � 1), it converges strongly. This

expression, thus, explicitly describes the low-frequency spectrum of classical fluids.
Figure 1 shows the variation of the real part of the normalized complex susceptibility

as a function of log10(ω/109) for different values ofγ = kBT /(IB2). For each value of
this parameter, the second and fourth convergents of equation (44) are plotted. CurvesA2,4

Figure 1. Plot of the real part of the normalized susceptibility versus log10(ω/109) for
a = h̄2/(IkBT ) = 0.05: (A) γ = 0.005, (B) γ = 0.05 and (C)γ = 0.5. Coefficients 2
and 4 inA2,4 stand for the order of convergence of the continued fraction (44).
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Figure 2. Plot of the imaginary part of the normalized susceptibility versus log10(ω/109) for
a = h̄2/(IkBT ) = 0.05: (A’) γ = 0.005, (B’) γ = 0.05 and (C’)γ = 0.5. Coefficients 2 and
4 in A′2,4 stand for the order of convergence of the continued fraction (44).

are the plots forγ = 0.005. A2 andA4 coincide exactly for the whole frequency spectrum.
Similarly B2,4 are the plots forγ = 0.05. Oncemore, the convergents coincide. Finally,C2

andC4 are those forγ = 0.5. They are distinct for a wide range of frequencies. Remark that
all six curves present kink shapes with the kink frequency ranges and steepnesses increasing
with increasingγ . The curves are drawn for a constant value of the mean thermal agitation
frequencyωmean= (kBT /I)0.5 = 1013 rad s−1. Fromω > 1.6×1013 rad s−1, dispersion (the
real part) becomes negative reaching a minimum value at a frequency of 2.5×1013 rad s−1

and increasing uniformly to zero for very high frequencies.
Figure 2 shows the imaginary part of the normalized susceptibility as a function of

log10(ω/109). The curvesA′2,4, B ′2,4, C ′2 and C ′4 are defined in a similar manner as
in figure 1. This figure illustrates exactly absorption resonance. From the curves, we
remark that resonance frequencies and resonance bandwidths depend strongly on frictionζ ,
throughγ = IkBT /ζ 2. For large friction(γ = 0.005), resonance occurs at a frequency of
1012 rad s−1 with band width1ω = 2.8× 1012 rad s−1. For moderate friction,(γ = 0.05),
it occurs at 4.5 × 1012 rad s−1 with a width 1ω = 1.4 × 1013 rad s−1 and finally, at
1.1× 1013 rad s−1 for γ = 0.5. It is important to remark that the relative positions of
resonances are independent of the order of convergence of the continued fraction (44) for
given value ofγ , but the order influences the magnitude of the loss factor (imaginary part)
and the real part of the electrical susceptibility. The convergence of the continued fraction
(44) is thus, guaranteed for large frictions and/or small inertial effects.

4.2. The Kerr function

We apply the continuum approximation to equation (21) to obtain

8(t) = 1
30

∫ ∞
0

dx e−x(ϕ(x, t)+ 3η1(x, t)). (45)

On performing the change of function

φ(x, t) = ϕ(x, t)+ 3η1(x, t) (46)
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in the system (36)–(38) and looking for solutions in the form

(
ϕ(x, τ )

φ(x, τ )

η2(x, τ )

)
=
∞∑
j=0

Xj(τ)Lj (x)Y 0
j (τ )Lj (x)

Y 1
j (τ )L

1
j (x)

 (47)

the Kerr function reads,

8(τ) = 1
30Y

0
0 (τ ) (48)

and the coefficientsXj(τ), Y 0
j (τ ) and Y 1

j (τ ) verify the coupled differential difference
equations:

[
(2j + 1)

(
d

dτ
+ 2j

)
+ 2

]
Xj(τ)− j

(
d

dτ
+ 2j − 2

)
Xj−1(τ )

−(j + 1)

(
d

dτ
+ 2j + 2

)
Xj+1(τ )− 1

2
Y 0
j (τ )

= b2
µE(τ)

kBT
[−2j (j − 1)S1

j−2(τ )+ j (4j + 5)S1
j−1(τ )− (j + 1)(2j + 3)S1

j (τ )]

(49)(
d

dτ
+ 2j

)
Y 0
j (τ )+ 24b2((j + 1)Y 1

j (τ )− jY 1
j−1(τ )) = −4b2

µE(τ)

kBT
S1
j−1 (50)(

d

dτ
+ 2j + 1

)
Y 1
j (τ )−

b1

3
(Y 0
j (τ )− Y 0

j+1(τ ))+
b1

3
(Xj (τ )−Xj+1(τ ))

= − b1
µE(τ)

kBT
S0
j − b1

1αE(τ)2

kBT
δj,0. (51)

For the same reasons as above, equations (48)–(51) will be termed the classical HT equations
for the optical Kerr effect.

On solving the system (49)–(51) forY 0
0 in the Laplace variable we obtain the Kerr

function:

8̃(s ′) = 1

15B

(α‖ − α⊥)E2
c

kBT

× 1

s ′

(
1+ R

4γ

s ′ + 2

2γ + s ′(s ′ + 1)+ 2γ s ′

s ′ + 2+ 4γ

s ′ + 3+ 4γ

s ′ + 4+ 6γ

s ′ + 5+ · · ·

)

× 6γ

s′(s′ + 1)+ 4γ
2s′ + 3

s′ + 2
+ 8γ s′

s′ + 2+ 16γ

s′ + 3− 4γ

(s′ + 2)(s′ + 4)
+ 16γ

s′ + 4+ 24γ

s′ + 5− 4γ

(s′ + 4)(s′ + 6)
+ 24γ

s′ + 6+ · · ·

(52)
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with R = µ2/[(α‖ − α⊥)kBT ]. The corresponding spectral function is

1n?(ω′) =
(

1+ R
4γ

iω′ + 2

2γ + iω′(iω′ + 1)+ 2γ iω′

iω′ + 2+ 4γ

iω′ + 3+ 4γ

iω′ + 4+ 6γ

iω′ + 5+ · · ·

)

× 6γ

iω′(iω′ + 1)+ 4γ
2iω′ + 3

iω′ + 2
+ 8γ iω′

iω′ + 2+ 16γ

iω′ + 3− 4γ

(iω′ + 2)(iω′ + 4)
+ 16γ

iω′ + 4+ 24γ

iω′ + 5− 4γ

(iω′ + 4)(iω′ + 6)
+ 24γ

iω′ + 6+ · · ·

.

(53)

Remark that the steady-state Kerr function [16] is recovered from equation (52) as

8stat= lim
s ′→0

[s ′B8̃(s ′)] = E2
c

15

(
α‖ − α⊥
kBT

+
(
µ

kBT

)2
)
. (54)

Let us point out here, the specific character of the Kerr response function which stands as
a ratio of continued fractions as opposed to that of the relaxation regime [9] where it is a
simple continued fraction.

Figures 3 and 4 are the plots of the real and the imaginary parts of the Kerr spectral
function (53) as functions of log10(ω/109) for differing values of the parameterR. Curve
(1) illustrates the case of highly polarizable non-polar systems(R = 0), (2) the case of
polarizable polar systems(R = 1) and (3) that of highly polar ones(R = 100). In each
case, the third convergent is considered. Note that both functions increase with increasing
R.

Figure 3. Plot of the real part of the normalized classical Kerr spectral function versus
log10(ω/109) for a = h̄2/(IkBT ) = 0.05: (1)R = 0, (2)R = 1 and (3)R = 100.
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Figure 4. Plot of the imaginary part of the normalized classical Kerr spectral function versus
log10(ω/109) for a = h̄2/(IkBT ) = 0.05: (1)R = 0, (2)R = 1 and (3)R = 100.

5. The rotating wave approximation (RWA) limit

In this limit, we assume that the solution of the rotators in the bath is highly diluted
so that the pressure and consequently friction are very low. The coupling parameterB

or the characteristic rotator-bath frequency is very small compared with the rotator lines
ωl = (h̄l/I ). The dynamics of the rotator is virtually governed by the free rotation in the
orienting field. Coupling affects only the frequency shifts and line widths.

Using a mathematical theorem on weak coupling [10, 18], all ‘off-diagonal terms’ and
couplings between matrix elements can be ignored in equations (27)–(29) so that they
become:(
∂

∂t
− i(ωl+1+1ωl+1)+ 0l+1

)
σl,l+1(t) = −i

µE(t)

h̄
(1− e−β(El+1−El)) (55)(

∂

∂t
+ γl

)
ϕl,l(t) = µE(t)

h̄

(
2l − 1

2l + 1
Im σl,l+1(t)− eβ(El−El−1)

2l + 3

2l + 1
Im σl−1,l(t)(1− δl,0)

)
(56)(

∂

∂t
− i(ω2l+3+1ω2l+3)+ 02l+3

)
ηl,l+2(t) = i

µE(t)

h̄
(e−β(El+1−El)σl+1,l+2(t)− σl,l+1(t))

−i
1αE(t)2

2h̄
(1− e−β(El+2−El)) (57)

with initial conditionsσl,l+1(0) = ϕl,l(0) = ηl,l+2(0) = 0. We define the dimensionless line
widths and frequency shifts:

γ ′l =
I

h̄
γl = 2BI

h̄

[
l2

2l + 1

(
1+ 1

eβh̄ωl − 1

)
+ (l + 1)2

eβh̄ωl+1 − 1

]
(58)

0′l+1 = 1
2(γ
′
l + γ ′l+1) (59)

0′2l+3 = 1
2(γ
′
l + γ ′l+2) (60)
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1ω′l+1 = −
4h̄3B

Ik2
BT

2
(2l + 3)

∞∑
n=0

(2nπ)3

[(2nπ)2+ (al)2]

× 1

[(2nπ)2+ (a(l + 1))2][(2nπ)2+ (a(l + 2))2]
(61)

1ω′2l+3 = −
4h̄3B

Ik2
BT

2
(2l + 3)

∞∑
n=0

(2nπ)5(1+ a
(nπ)2

(l2+ 3l + 3))

[(2nπ)2+ (al)2][(2nπ)2+ (a(l + 1))2]

× 1

[(2nπ)2+ (a(l + 1))2][(2nπ)2+ (a(l + 2))2]
. (62)

These functions well indicate how line widths and frequency shifts respond to changing
physical parameters such as inertia, friction and temperature, thus their utility in exploring
the influence of the parameter variations on spectral lines. Note that in our dimensionless
frequency unit we define the quantum state frequencyω′l = l. Equations (17) and (55) will
be called the quantum HT equations for the electrical susceptibility while (21), (56) and
(57) are those of the Kerr effect. The classical and quantum HT equations for the electrical
susceptibility and the Kerr optical effect so termed are very general in field type. The
description of dielectric relaxation phenomena could also be done using these equations,
putting in themE(t) = 0 and setting appropriate initial conditions.

5.1. The DC field susceptibility

In constant field, equation (55) is solved to obtain

σl,l+1(t) =
(µEc/h̄)[1− exp[− h̄2

IkBT
(l + 1)]]

02
l+1+ (ωl+1+1ωl+1)2

×{(ωl+1+1ωl+1)[1− e−0l+1t cos(ωl+1+1ωl+1)t ]

−0l+1 sin[(ωl+1+1ωl+1)t ]e
−0l+1t − i(0l+1[1− e−0l+1t cos(ωl+1+1ωl+1)t ]

+(ωl+1+1ωl+1) sin[(ωl+1+1ωl+1)t ]e
−0l+1t )}. (63)

We deduce the steady-state matrix elements

σ stl,l+1 =
(µEc/h̄)(1− exp[− h̄2

IkBT
(l + 1)])

02
l+1+ (ωl+1+1ωl+1)2

((ωl+1+1ωl+1)− i0l+1). (64)

The steady-state polarization can then be calculated. It is found to be the usual
P = µ2E/3kBT with a friction-dependent correction which decreases proportionately as
ζ 2/IkBT but since this result has been obtained in the limit of small friction and/or high
inertia, the additional term becomes insignificant.

On defining the deviation at timet from the above steady-state value,1σl,l+1(t) =
σ stl,l+1− σl,l+1(t), and spectral function

1σ̃l,l+1(ω) = σ stl,l+1− iω
∫ ∞

0
1σl,l+1(t)e

−iωt dt (65)

we obtain from equation (17), the reduced susceptibility

1χ?r (ω
′) = 1χ ′r (ω′)− i1χ ′′r (ω

′) (66)

where

1χ ′r (ω
′) =

∞∑
l=0

(l + 1)(l + 1+1ω′l+1)(e
−βEl − e−βEl+1)
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Figure 5. Plot of the real (1) and the imaginary (2) parts of normalized susceptibility versus the
dimensionless frequencyω′ = ω/(h̄/I ) for a = h̄2/(IkBT ) = 0.05,B = 0.001ωmean (RWA).

× (l + 1+1ω′l+1)
2− ω′2+ 0′2l+1

[(l + 1+1ω′l+1)
2− ω′2+ 0′2l+1]2+ 4ω′20′2l+1

(67)

and

1χ ′′r (ω
′) =

∞∑
l=0

2(l + 1)(l + 1+1ω′l+1)(e
−βEl − e−βEl+1)

× ω′0′l+1

[(l + 1+1ω′l+1)
2− ω′2+ 0′2l+1]2+ 4ω′20′2l+1

(68)

with ω′ = ωI/h̄.
Figure 5 shows the plots of the normalized dispersion coefficient (1) and loss factor (2)

as functions of the dimensionless frequencyω′ = ωI/h̄ for weak coupling (B = 10−3ωmean)
with h̄2/(IkBT ) = 0.05. The loss factor, an entirely positive quantity, presents an oscillatory
character for 16 ω′ 6 10 and vanishes for very high frequencies. Dispersion also shows
this oscillatory behaviour but for high frequencies, it reverses sign and tends asymptotically
to zero.

5.2. The Kerr function

Equations (56) and (57) give the integral form forϕl,l(t) andηl,l+2(t):

ϕl,l(t) = µE

h̄

2l − 1

2l + 1
exp(−γlt)

∫ t

0
dt ′ exp(γlt

′) Im σl,l+1(t
′)

−µE
h̄

e−al
2l + 3

2l + 1
exp(−γlt)

∫ t

0
dt ′ exp(γlt

′) Im σl−1,l(t
′) (69)

and

ηl,l+2(t) = i
µE

h̄
e−a(l+1) exp[−{02l+3− i(ω2l+3+1ω2l+3)}t ]
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×
∫ t

0
dt ′ exp[{02l+3− i(ω2l+3+1ω2l+3)}t ′]σl+1,l+2(t

′)

−i
µE

h̄
exp[−{02l+3− i(ω2l+3+1ω2l+3)}t ]

×
∫ t

0
dt ′ exp[{02l+3− i(ω2l+3+1ω2l+3)}t ′]σl,l+1(t

′)

−i
1αE2

c

2h̄
(1− e−a(2l+3)) exp[−{02l+3− i(ω2l+3+1ω2l+3)}t ]

×
∫ t

0
dt ′ exp[{02l+3− i(ω2l+3+1ω2l+3)}t ′] (70)

wherea = h̄2/(IkBT ). When substituting forσl,l+1 as obtained previously, we easily show
that

ϕl,l(t) = ϕstl,l −1ϕl,l(t) (71)

with

ϕstl,l =
µ2E2

h̄2 Re

[
2l+3
2l+1(e

al − 1)

γl [0l + i(ωl +1ωl)] −
2l−1
2l+1(1− e−a(l+1))

γl [0l+1+ i(ωl+1+1ωl+1)]

]
(72)

and

1ϕl,l(t) = µ2E2

h̄2 Re

[{
2l + 3

2l + 1
(eal − 1)

1

γl [0l + i(ωl +1ωl)]
−2l − 1

2l + 1
(1− e−a(l+1))

1

γl [0l+1+ i(ωl+1+1ωl+1)]

}
exp(−γlt)

+2l + 3

2l + 1
(eal − 1)

exp[−(0l + i(ωl +1ωl))t ]
[γl − 0l − i(ωl +1ωl)][0l + i(ωl +1ωl)]

−2l − 1

2l + 1
(1− e−a(l+1))

× exp[−{0l+1+ i(ωl+1+1ωl+1)}t ]
[γl − 0l+1− i(ωl+1−1ωl+1)][0l+1+ i(ωl+1+1ωl+1)]

]
. (73)

Similarly,

1ηl,l+2(t) = ηstl,l+2− ηl,l+2(t) = µ2E2

h̄2

[(
1− e−a(l+1)

02l+3− 0l+1− i(ωl+2+1ωl+2)

− e−a(l+1)(1− e−a(l+2))

02l+3− 0l+2− i(ωl+1+1ωl+1)
− i

R
(1− e−a(2l+3))

)
×exp[−{02l+3− i(ω2l+3+1ω2l+3)}t ]

[02l+3− i(ω2l+3+1ω2l+3)]

−(1− e−a(l+1))
exp[−{0l+1− i(ωl+1+1ωl+1)}t ]

[0l+1− i(ωl+1+1ωl+1)][02l+3− 0l+1− i(ωl+2+1ωl+2)]

+ e−a(l+1)(1− e−a(l+2)) exp[−{0l+2− i(ωl+2+1ωl+2)}t ]
[0l+2− i(ωl+2+1ωl+2)][02l+3− 0l+2− i(ωl+1+1ωl+1)]

]
(74)

with

ηstl,l+2 =
µ2E2

h̄2

(
(1− e−a(l+2))e−a(l+1)

0l+2− i(ωl+2+1ωl+2)
− (1− e−a(l+1))

0l+1− i(ωl+1+1ωl+1)
− i

R
(1− e−a(l+2))

)
× 1

02l+3− i(ω2l+3+1ω2l+3)
. (75)
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On defining a spectral function similar to that of the polarization, for all frequency
ω = (h̄/I )ω′, we obtain, after using equation (21), that

18̃∗(ω′) = 18̃′(ω′)−18̃′′(ω′). (76)

It is important to give a physical meaning to18̃(ω′). Its time picture depicts the deviation at
time t from its steady-state valueE

2

15((µ/kBT )
2 + (1α/kBT )). 18(t) therefore describes

the transient state following the sudden application of the constant electric field. It can
also be called a relaxation function. Using its spectral function observed spectra may be
accounted for. This method of characterizing dielectrics should be capable of recovering
results furnished by the field removal relaxation method [9, 10]. On the other hand, some
new important features will appear. The field removal relaxation reveals only one type of
rotational transition(l → l + 2) but due to the fact that the new approach couples both
susceptibility and the Kerr function (cf equations (27)–(29)),l→ l+1 also intervene in the
relaxation mechanism. This method is therefore important as spectral lines not accounted
for by the the usual method appear naturally.

Regardless of the complicated mathematical form of the real and the imaginary parts
of this function, their significance for the interpretation of relevant physical properties of
dielectric media earns them being written out explicitly as:

18̃′(ω′) = 1

15

(
µEc

kBT

)2 ∞∑
l=0

l + 1

a(2l + 3)
e−βEl

×
{
− l(1− e−a(l+1))γ ′l 0

′
l+1

/
[(0′2l+1+ (l + 1+1ω′l+1)

2)(γ ′2l + ω′2)]

+ l(2l + 3)

2l − 1
(eal − 1)γ ′l 0

′
l

/
[(0′2l + (l +1ω′l )2)(γ ′2l + ω′2)]

−l(1− e−a(l+1)){[0′l+1(γ
′
l − 0′l+1)+ (l + 1+1ω′l+1)

2]

×[0′2l+1+ (l + 1+1ω′l+1)
2− ω′2] + 2ω′20′l+1(γ

′
l − 0′l+1)}/

[{(γ ′l − 0′l+1)
2+ (l + 1+1ω′l+1)

2}

×{(0′2l+1+ (l + 1+1ω′l+1)
2− ω′2)2+ 4ω′20′2l+1}]

+ l(2l + 3)

(2l − 1)
(eal − 1){[0′l(γ ′l − 0′l)+ (l +1ω′l )2]

×[0′2l + (l +1ω′l )2− ω′2] + 2ω′20′l(γ
′
l − 0′l)}/

[{(γ ′l − 0′l)2+ (l +1ω′l )2}{(0′2l + (l +1ω′l )2− ω′2)2+ 4ω′20′2l }]

−3(l + 2)(1− e−a(l+2))e−a(l+1)

×{[(0′2l+3− 0′l+2)02l+3− (2l + 3+1ω′2l+3)(l + 1+1ω′l+1)]

×[0′22l+3+ (2l + 3+1ω′2l+3)
2− ω′2] + 2ω′20′2l+3(0

′
2l+3− 0′l+2)}/

[{(0′2l+3− 0′l+2)
2+ (l + 1+1ω′l+1)

2}

×{(0′22l+3+ (2l + 3+1ω′2l+3)
2− ω′2)2+ 4ω′20′22l+3}]

+3(l + 2)(1− e−a(l+1))

{[(0′2l+3− 0l+1)02l+3− (2l + 3+1ω′2l+3)(l + 2+1ω′l+2)]

×[0′22l+3+ (2l + 3+1ω′2l+3)
2− ω′2] + 2ω′20′2l+3(0

′
2l+3− 0′l+1)}
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[{(0′2l+3− 0′l+1)

2+ (l + 2+1ω′l+2)
2}

×{(0′22l+3+ (2l + 3+1ω′2l+3)
2− ω′2)2+ 4ω′20′22l+3}]

−3(l + 2)(1− e−a(l+1))

×{[(0′2l+3− 0l+1)0l+1− (l + 2+1ω′l+2)(l + 1+1ω′l+1)]

×[0′2l+1+ (l + 1+1ω′l+1)
2− ω′2] + 2ω′20′l+1(0

′
2l+3− 0′l+1)}/

[{(0′2l+3− 0′l+1)
2+ (l + 2+1ω′l+2)

2}

×{(0′2l+1+ (l + 1+1ω′l+1)
2− ω′2)2+ 4ω′20′2l+1}]

+3(l + 2)(1− e−a(l+2))e−a(l+1)

×{[(0′2l+3− 0l+2)0l+2− (l + 1+1ω′l+1)(l + 2+1ω′l+2)]

×[0′2l+2+ (l + 2+1ω′l+2)
2− ω′2] + 2ω′20′l+2(0

′
2l+3− 0′l+2)}/

[{(0′2l+3− 0′l+2)
2+ (l + 1+1ω′l+1)

2}

×{(0′2l+2+ (l + 2+1ω′l+2)
2− ω′2)2+ 4ω′20′2l+2}]

+ 3

R
(l + 2)(1− e−a(2l+3))[0′22l+3+ (2l + 3+1ω′2l+3)

2− ω′2]/
[(0′22l+3+ (2l + 3+1ω′2l+3)

2− ω′2)2+ 4ω′20′22l+3]

}
(77)

and

18̃′′(ω′) = 1

15

(
µEc

kBT

)2 ∞∑
l=0

(l + 1)ω′

a(2l + 3)
e−βEl

×
{
− l(1− e−a(l+1))0′l+1

/
[{0′2l+1+ (l + 1+1ω′l+1)

2}(γ ′2l + ω′2)]

+ l(2l + 3)

2l − 1
(eal − 1)0′l

/
[{0′2l + (l +1ω′l )2}(γ ′2l + ω′2)]

−l(1− e−a(l+1)){20′l+1[(γ ′l − 0′l+1)0
′
l+1+ (l + 1+1ω′l+1)

2]

−(γ ′l − 0′l+1)[0
′2
l+1+ (l + 1+1ω′l+1)

2− ω′2]}/
[{(γ ′l − 0′l+1)

2+ (l + 1+1ω′l+1)
2}

×{(0′2l+1+ (l + 1+1ω′l+1)
2− ω′2)2+ 4ω′20′2l+1}]

+ l(2l + 3)

(2l − 1)
(eal − 1){20′l [(γ ′l − 0′l)0′l + (l +1ω′l )2]

−(γ ′l − 0′l)[0′2l + (l +1ω′l )2− ω′2]}/
[{(γ ′l − 0′l)2+ (l +1ω′l )2}{(0′2l + (l +1ω′l )2− ω′2)2+ 4ω′20′2l }]

−3(l + 2)(1− e−a(l+2))e−a(l+1)

×{202l+3[(0′2l+3− 0′l+2)02l+3− (2l + 3+1ω′2l+3)(l + 1+1ω′l+1)]

−(0′2l+3− 0′l+2)[(2l + 3+1ω′2l+3)
2− ω′2+ 0′22l+3]}
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[{(0′2l+3− 0′l+2)

+(l + 1+1ω′l+1)
2}

×{(0′22l+3+ (2l + 3+1ω′2l+3)
2− ω′2)2+ 4ω′20′22l+3}]

+3(l + 2)(1− e−a(l+1))

×{202l+3[(0′2l+3− 0′l+1)0
′
2l+3− (2l + 3+1ω′2l+3)(l + 2+1ω′l+2)]

−(0′2l+3− 0′l+1)[0
′2
2l+3− ω′2+ 0′22l+3]}/

[{(0′2l+3− 0′l+1)
2+ (l + 2+1ω′l+2)

2}

×{(0′22l+3+ (2l + 3+1ω′2l+3)
2− ω′2)2+ 4ω′20′22l+3}](1− e−a(l+1))

×{20l+1[(0′2l+3− 0′l+1)0l+1− (l + 2+1ω′l+2)(l + 1+1ω′l+1)]

−(0′2l+3− 0′l+1)[0
′2
l+1− ω′2+ (l + 1+1ω′l+1)

2]}/
[{(0′2l+3− 0′l+1)

2+ (l + 2+1ω′l+2)
2}

×{(0′2l+1+ (l + 1+1ω′l+1)
2− ω′2)2+ 4ω′20′2l+1}]

+3(l + 2)(1− e−a(l+2))e−a(l+1)

×{20l+2[(0′2l+3− 0′l+2)0
′
l+2− (l + 1+1ω′l+1)(l + 2+1ω′l+2)]

−(0′2l+3− 0′l+2)[0
′2
l+2− ω′2+ (l + 2+1ω′l+2)

2]}/
[{(0′2l+3− 0′l+2)

2+ (l + 2+1ω′l+2)
2}

×{(0′2l+2+ (l + 1+1ω′l+1)
2− ω′2)2+ 4ω′20′2l+2}]

+ 6

R
(l + 2)(1− e−a(2l+3))0′2l+3/

[(0′22l+3+ (2l + 3+1ω′2l+3)
2− ω′2)2+ 4ω′20′22l+3]

}
(78)

whereR = µ2/(1αkBT ). Despite a number of publications giving theoretical description
of polar fluids, the problem of formulating analytical description of relevant spectra over
a wide frequency range has not yet been solved. The above expressions, explicitly reveal
a detailed dependence on temperature and inertial effects through the shifts and widths
and could directly be exploited to analyse observed spectra and give valuable information
about molecular structure, intermolecular interactions and characteristic times of molecular
rotational motions.

6. Discussions

(i) Figure 1 is the normalized plot of the classical dispersion factor (the real part of the
complex susceptibility) versus log10(ω/109) for a = h̄2/(IkBT ) = 0.05: (A) γ = 0.005,
(B) γ = 0.05 and (C)γ = 0.5. Coefficients 2 and 4 inA2,4 stand for the order of
convergence of the continued fraction (44). From this figure, we observe that the dispersion
factor vanishes at same frequency(ωc = 1.6× 1013 rad s−1) for all γ values. The more
γ increases, the more the dispersion factor kink gets strong but tends asymptotically to a
limit form that presents a square wall at the upper part (y-positive) and a sharp concavity at
the bottom (y-negative). The well depth appearing at the bottom is the more important, the
moreγ increases. This phenomenon could be interpreted from the molecular structure of
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the medium. Indeed, largeγ values(γ > 0.5) correspond to small friction(ζ ) for which the
bath of oscillators is less concentrated. Collisions between the rotator and bath oscillators
are less frequent, thus the bath-rotator system is less dispersive. Dispersion, then, changes
very little over a wide frequency range(0− 4× 1012 rad s−1) but falls abruptly to zero at
a cut-off frequency equal toωc. In contrast to the case of largeγ , small γ (γ 6 0.005)
correspond to large frictionζ , that means a highly concentrated bath, giving the medium a
more dispersive character. Dispersion, thus, varies conspicuously with increasing frequency
up toωc. ωc is, thus, the frequency beyond which every medium becomes less dispersive
than the vacuum. On limiting the analysis to the electrical susceptibility, therefore, all media
are transparent to electromagnetic waves of frequency far above the cut-off frequency. The
less concentrated the bath is, the more reduced its dispersivity is (the deeper the well).

(ii) Absorption resonance frequencies as well as its maxima increase with increasingγ .
Free particles absorb radiations more than bound ones. This explains the observation that
less dense media will absorb more than denser ones (see figure 2). Quantum effects start
appearing when the medium characteristic frequency is of the order of ¯h/I ∼ 1013 rad s−1.
This effect manifests for weak couplings (the RWA) which here correspond to small friction
(or largeγ ). This explains why asγ increases, resonance frequencies grow, approaching
the quantum range.

(iii) For the same bath concentration(γ = 0.05):
(a) for sameR values (polar or non-polar molecules), there exists an initial frequency

range over which the refraction coefficient remains constant (see figure 3). This widens
as the dipole moment of the molecules increases. For example, for non-polar molecules
(R = 0), this range length is of the order 3× 1012 rad s−1 while for molecules with equal
permanent and induced moment energy contribution(R = 1), it is 6.3× 1012 rad s−1 and
for purely polar ones(R→∞), it stands at about 1013 rad s−1;

(b) a steady-state value of the refraction coefficient is practically attained at a frequency
of 5.0× 1014 rad s−1 independent of the degree of polarization of the molecules;

(c) there exists a specific frequency characterizing the bath structure at which, regardless
of the molecular electronic structure, the Kerr refraction coefficient is always the same. It
occurs at 6.3× 1013 rad s−1 for γ = 0.05. At this frequency the Kerr absorption maxima
appear which are more pronounced and therefore the more polar the molecules are.

A general view of the Kerr classical dispersion spectrum is a sluggish variation for
low frequencies 0< ω < 1013 rad s−1, followed by abrupt falls for frequencies between
1013 and 1014 rad s−1. Above this value, it attains a steady positive value of 0.4 in the
normalized units (see figure 3). The quantum one starts with a small constant negative
value (for molecules with ¯h/I ∼ 4× 1012 rad s−1, e.g. HCl) for frequencies lower than
1013 rad s−1 (for less polar systems) and beyond this frequency value spectral lines start
appearing (see figures 7 and 8(1)).

(iv) For the fixed inertia/temperature parameter (a = h̄2/
(
IkBT

) = 0.05), we observe,
as the coupling parameters = B/ωmean (with ω2

mean= kBT /I ) decreases from 5.0× 10−3

through 2.5 × 10−3 to 1.0 × 10−3, a transition from a continuous spectrum (1) through
broadened lines (2) to separate lineforms (3) (see figure 6). This phenomenon was observed
experimentally by Frenkel [17] for HCl in argon while varying argon density. Indeed, the
line width at half height varies proportionately with the friction parameterB as potrayed
by equation (58). AsB increases, thus, lines broaden out and fuse up forming a continuous
spectrum. This explains the fact that whenB for a medium approachesωmean, the latter
acquires typical classical behaviours. In contrast, whenB is very small compared with
ωmean, particles are far apart, colliding less frequently leading to highly uncorrelated
collisions. This results in pure discrete spectra. Let us make note of the fact that the
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Figure 6. Plot of the imaginary part of normalized susceptibility versus the dimensionless
frequencyω′ = ω/(h̄/I ) for a = h̄2/(IkBT ) = 0.05: (1) B = 0.0025ωmean, (2) B =
0.0050ωmean and (3)B = 0.0010ωmean (RWA).

Figure 7. Plot of the real part of normalized Kerr spectral function versus the dimensionless
frequencyω′ = ω/(h̄/I ) for a = h̄2/(IkBT ) = 0.05,R = 0 andB = 0.001ωmean (RWA).

calculated line shifts (equation (61)) have negligible influence on the spectral line positions
(1ω′l+1 ∼ −10−4(2l + 3) as opposed toω′l+1 = l + 1). This was also observed by Frenkel
using impact cross section calculations.

(v) For the same friction parameterB = ζ/I = 0.001(kBT /I)0.5, for a = 0.05 and for
R 6= 0, the Kerr spectra present distorsions with amplitudes increasing with increasingR

(see figures 8(2) and 10(2)). For non-polar systems, the imaginary part of the Kerr spectral
function shows the usual line shape (see figure 9), meanwhile for polar ones lines start with
very pronounced peaks, then falling into weak negative value peaks which vanish for large
frequencies (see figure 10).
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Figure 8. Plot of the real part of normalized Kerr spectral function versus the dimensionless
frequencyω′ = ω/(h̄/I ) for a = h̄2/(IkBT ) = 0.05, B = 0.001ωmean: (1) R = 1 and (2)
R = 100 (RWA).y-units are the same as in figure 7.

Figure 9. Plot of the imaginary part of normalized Kerr spectral function versus the
dimensionless frequencyω′ = ω/(h̄/I ) for a = h̄2/(IkBT ) = 0.05,R = 0 andB = 0.001ωmean

(RWA).

The distorsions observed in the Kerr low-frequency dispersion spectrum of polar fluids
result from the mixing of lines corresponding to transitions between small quantum number
l levels. Remark that, while the electrical susceptibility allows only lines corresponding to
the selection rule1l = lf − li = ±1, to be computed, the Kerr effect accounts for transitions
of the form1l = lf − li = ±2.

We have theoretically investigated the effect of bath concentration or friction on observed
spectra of polar fluids. Bath concentration considerably affects the shape (linewidth) and
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Figure 10. Plot of the imaginary part of normalized Kerr spectral function versus the
dimensionless frequencyω′ = ω/(h̄/I ) for a = h̄2/(IkBT ) = 0.05, B = 0.001ωmean: (1)
R = 1 and (2)R = 100 (RWA).

line position of spectra. The classical continuous ones, observable for low-frequency ranges,
have been highlighted while far infrared line have been analysed for less concentrated host
bath. Our theory allows the exploration of the spectra of polar fluids over a wide range of
temperatures and frequencies.
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